Mechanistic Studies on the Catalytic Asymmetric Mannich-Type Reaction with Dihydroisoquinolines and Development of Oxidative Mannich-Type Reactions Starting from Tetrahydroisoquinolines

Christian Dubs, ${ }^{\dagger}$ Yoshitaka Hamashima, ${ }^{\dagger}$ Naoki Sasamoto, ${ }^{\dagger}$ Thomas M. Seidel, ${ }^{\dagger}$ Shoko Suzuki, ${ }^{\dagger}$ Daisuke Hashizume, ${ }^{\dagger}$ and Mikiko Sodeoka*, ${ }^{\dagger}$
Synthetic Organic Chemistry Laboratory, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan, and Molecular Characterization Team, RIKEN, Hirosawa, Wako 351-0198, Japan
sodeoka@riken.jp

Received April 15, 2008

intramolecular Michael reaction

(R)-DM-SEGPHOS

Detailed mechanistic studies on our recently reported asymmetric addition reactions of malonates to dihydroisoquinolines (DHIQs) catalyzed by chiral $\mathrm{Pd}(\mathrm{II})$ complexes were carried out. It was found that an N, O-acetal was generated in situ by the reaction of DHIQ with $(\mathrm{Boc})_{2} \mathrm{O}$, and cooperative action of the $\mathrm{Pd}(\mathrm{II})$ complex as an acid-base catalyst allowed the formation of a chiral Pd enolate and a reactive iminium ion via α-fragmentation. The iminium ion was also accessible via oxidation with DDQ as an oxidant, and a catalytic asymmetric oxidative Mannich-type reaction was achieved with tetrahydroisoquinolines (THIQs) as starting materials. This oxidation protocol was applicable to N-acryloyl-protected THIQs, allowing the efficient synthesis of optically active tetrahydrobenzo[a]quinolizidine derivatives via intramolecular Michael reaction.

Introduction

C1-substituted tetrahydroisoquinolines (THIQs) represent an important family of biologically active alkaloids, and have been a target for synthetic organic chemists for decades. ${ }^{1}$ Various approaches to construct this ring system have been developed (Scheme 1), including the Pictet-Spengler reaction, the Bischler-Napieralski reduction approach, the Pomeranz-Fritsch cyclization, the deprotonation-alkylation reaction, and addition reactions of nucleophiles to the $\mathrm{C}=\mathrm{N}$ bonds of dihydroisoquinolines (DHIQs). ${ }^{2}$ So far, most asymmetric syntheses of these molecules have relied on the use of optically active starting materials or chiral auxilaries. Such reactions require a stoichiometric amount of chiral sources, and therefore the development of efficient methods for asymmetric catalysis has also been of great interest. However, the number of practical catalytic

[^0]SCHEME 1. Representative Methods for the Synthesis of Optically Active C1-Substituted THIQs

reactions is still limited. High turnover numbers and excellent enantioselectivity were achieved in the catalytic asymmetric
transfer hydrogenation of C1-substituted DHIQs. ${ }^{3}$ Recently, intramolecular allylic amination reactions with chiral $\operatorname{Pd}(0)$ complexes were also reported as a powerful method to obtain C1-vinyl-substituted THIQs in a highly enantioselective manner. ${ }^{4}$

In addition to these elegant methodologies, catalytic asymmetric addition reactions to the $C=N$ bonds of isoquinoline scaffolds are also important alternative approaches. Several successful examples of such addition reactions with various nucleophiles, including dialkyl zinc, ${ }^{5}$ trimethylsilylcyanide, ${ }^{6}$ allylsilanes, ${ }^{7}$ terminal alkynes, ${ }^{8}$ and carbonyl compounds, ${ }^{9}$ have been reported. Recently, addition reactions with other heterocyclic systems, such as pyridine, to furnish chiral nitrogencontaining cyclic compounds have also been gaining much attention, and unique methods have been devised for diastereoselective reactions ${ }^{10}$ and (catalytic) enantioselective reactions. ${ }^{11}$ Even catalytic asymmetric acyl Pictet-Spengler reactions became feasible with chiral thiourea-based organocatalysts, although available nucleophilic aromatic rings are limited to only indoles. ${ }^{12}$
(2) For excellent general reviews, see: (a) Chrzanowska, M.; Rozwadowska, M. D. Chem. Rev. 2004, 104, 3341-3370. (b) Rozwadowska, M. D. Heterocycles 1994, 39, 903-931. Recent progress in diastereoselective syntheses: (c) Pedrosa, R.; Andrés, C.; Iglesias, J. M. J. Org. Chem. 2001, 66, 243-350. (d) GonzálezTemprano, I.; Osante, I.; Lete, E.; Sotomayor, N. J. Org. Chem. 2004, 69, $3875-$ 3885. (e) García, E.; Arrasate, S.; Lete, E.; Sotomayor, N. J. Org. Chem. 2005, 70, 10368-10374.
(3) Reduction of DHIQs: (a) Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 4916-4917, and references cited thereinRecently, the catalytic asymmetric hydrogenation of isoquinolines was reported: (b) Lu, S.-M.; Wang, Y.-Q.; Han, X.-W.; Zhou, Y.-G. Angew. Chem., Int. Ed. 2006, 45, 2260-2263.
(4) (a) Ito, K.; Akashi, S.; Saito, B.; Katsuki, T. Synlett 2003, 1809-1812. (b) Shi, C.; Ojima, I. Tetrahedron 2007, 63, 8563-8570.
(5) (a) Ukaji, Y.; Shimizu, Y.; Kenmoku, Y.; Ahmed, A.; Inomata, K. Chem. Lett. 1997, 59-60. (b) Ukaji, Y.; Shimizu, Y.; Kenmoku, Y.; Ahmed, A.; Inomata, K. Bull. Chem. Soc. Jpn. 2000, 73, 447-452. (c) Wang, S.; Seto, C. T. Org. Lett. 2006, 8, 3979-3982.
(6) Funabashi, K.; Ratni, H.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 10784-10785.
(7) (a) Itoh, T.; Miyazaki, M.; Fukuoka, H.; Nagata, K.; Ohsawa, A. Org. Lett. 2006, 8, 1295-1297. Also, the reaction with a chiral allylsilane was reported: (b) Yamaguchi, R.; Tanaka, M.; Matsuda, T.; Fujita, K. Chem. Commun. 1999, 2213-2214.
(8) (a) Li, Z.; MacLeod, P. D.; Li, C.-J. Tetrahedron: Asymmetry 2006, 17, 590-597. (b) Taylor, A. M.; Schreiber, S. Org. Lett. 2006, 8, 143-146.
(9) (a) Murahashi, S.-I.; Imada, Y.; Kawakami, T.; Harada, K.; Yonemushi, Y.; Tomita, N. J. Am. Chem. Soc. 2002, 124, 2888-2889. (b) Itoh, T.; Yokoya, M.; Mizauchi, K.; Nagata, K.; Ohsawa, A. Org. Lett. 2003, 5, 4301-4303. (c) Taylor, M. S.; Tokunaga, N.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 6700-6704. (d) Frisch, K.; Langda, A.; Saaby, S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 6058-6063.
(10) Recent examples of diastereoselective addition reactions of carboncentered nucleophiles to other cyclic $\mathrm{C}=\mathrm{N}$ bonds: (a) Comins, D. L.; Kuethe, J. T.; Hong, H.; Lakner, F. J.; Concolino, T. E.; Rheingold, A. L. J. Am. Chem. Soc. 1999, 121, 2651-2652. (b) Charette, A. B.; Grenon, M.; Lemire, A.; Pourashraf, M.; Martel, J. J. Am. Chem. Soc. 2001, 123, 11829-11830. (c) Yamada, S.; Morita, C. J. Am. Chem. Soc. 2002, 124, 8184-8185. (d) Legault, C.; Charette, A. B. J. Am. Chem. Soc. 2003, 125, 6360-6361. (e) Poupon, E.; Francois, D.; Kunesch, N.; Husson, H.-P. J. Org. Chem. 2004, 69, 3836-3841. (f) Focken, T.; Charette, A. B. Org. Lett. 2006, 8, 2985-2988. (g) Turcaud, S.; Sierecki, E.; Martens, T.; Royer, J. J. Org. Chem. 2007, 72, 4882-4885. (h) Yamada, S.; Inoue, M. Org. Lett. 2007, 9, 1477-1480.
(11) Recent examples of (catalytic) enantioselective addition reactions of carbon-centered nucleophiles to other cyclic $\mathrm{C}=\mathrm{N}$ bonds: (a) Nakamura, M.; Hirai, A.; Nakamura, E. J. Am. Chem. Soc. 1996, 118, 8489-8490. (b) Ichikawa, E.; Suzuki, M.; Yabu, K.; Albert, M.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 11808-11809. (c) Kanai, M.; Kato, N.; Ichikawa, E.; Shibasaki, M. Synlett 2005, 1491-1508. (d) Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2006, 128, 9646-9647. (e) Yamaoka, Y.; Miyabe, H.; Takemoto, Y. J. Am. Chem. Soc. 2007, 129, 6686-6687. (f) Sun, Z.; Yu, S.; Ding, Z.; Ma, D. J. Am. Chem. Soc. 2007, 129, 9300-9301.
(12) (a) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 1055810559. (b) Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, 128, 1086-1087. (c) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404-13405.

$2 \mathrm{THO}^{-}$
1

2

3
a: $\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ [(R)-DM-SEGPHOS] b: $\mathrm{Ar}=\mathrm{Ph}[(R)-\mathrm{BINAP}]$ c: $\mathrm{Ar}=\mathrm{Ph}[(R)-$ SEGPHOS] d: $\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ [(R)-DM-BINAP]

FIGURE 1. Chiral Pd complexes used in this work.
As regards addition reactions of carbonyl compounds to $\mathrm{C}=\mathrm{N}$ bonds, great efforts have been made to develop Mannich-type reactions with acyclic imines, using ingenious chiral basic metal complexes and organic catalysts. ${ }^{13}$ In striking contrast, reactions with cyclic imines have been less well studied, and only a few successful examples are known, ${ }^{9}$ although many examples of diastereoselective reactions with chiral metal enolates were reported. ${ }^{14}$ This might be due to difficulties associated with the lower reactivity of cyclic imines and less efficient face discrimination. Because the nitrogen atom of the cyclic imines is normally substituted by a simple alkyl group, the electrophilicity is insufficient compared with that of acyclic imines having electron-withdrawing groups such as acyl groups, sulfonyl groups, and diarylphosphonoyl groups. In addition, the difference in the steric size of two substituents on the nitrogen is not large, which makes it difficult to distinguish the two faces of the cyclic imines. Therefore, a novel system that can provide not only an appropriate chiral environment but also effective activation of the imine is highly desirable for the development of efficient Mannich-type reactions with cyclic imines.

Previously, we described catalytic asymmetric Mannich-type reactions of β-keto esters with acyclic imines using chiral $\mathrm{Pd}(\mathrm{II})$ complexes $\mathbf{1}$ (Figure 1). ${ }^{15}$ Reaction of 1,3-dicarbonyl compounds with the Pd complex 1 affords a chiral Pd enolate, accompanied by the formation of a strong protic acid, and protonation of the imines is important to promote the reaction efficiently (Scheme 2). On the assumption that less reactive cyclic imines would be activated by protonation to form an iminium intermediate, we attempted the reaction of DHIQs with malonates. We finally found that the reaction of diisopropyl malonate with various DHIQs proceeded smoothly in the presence of a catalytic amount

[^1]SCHEME 2. Reaction of $\boldsymbol{\beta}$-Keto Esters with Acyclic Imines

SCHEME 3. Mannich-Type Reaction To Give Optically Active THIQs

SChEME 4. The Influence of the Reaction Procedure on the Reaction Efficiency

SCHEME 5. Proposed Catalytic Cycle

of $\left[\{(R)\right.$-dm-segphos $\left.\} \operatorname{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](\mathrm{OTf})_{2}$ to furnish C1-substituted optically active THIQs with up to 97% ee (Scheme 3, eq 1).

Herein we describe full details of catalytic asymmetric Mannich-type reactions of malonates with in situ-formed iminium ions of DHIQs using chiral $\mathrm{Pd}(\mathrm{II})$ complexes as
catalysts. ${ }^{16,17}$ In the first part, the mechanism of the reaction with DHIQs in the presence of $(\mathrm{Boc})_{2} \mathrm{O}$ is discussed. These studies indicate that the reaction proceeds via the formation of N, O-acetals, and consecutive α-fragmentation gives the reactive iminium ion intermediate. On the basis of these results, we attempted the direct generation of the iminium ion intermediate starting from N-Boc-protected THIQs or free THIQs. In the second part, a novel catalytic asymmetric oxidative Mannichtype reaction, in which the iminium ion intermediate is formed via oxidation with DDQ as an oxidant, is described (Scheme 3, eq 2).

Results and Discussion

1. Catalytic Asymmetric Addition Reactions of Malonates to DHIQs. Motivated by our previous results, ${ }^{15}$ we attempted the reaction with DHIQs (4) using malonates (5) as nucleophiles in the presence of a catalytic amount of the Pd complex 1. After examining various reaction conditions, we developed a highly enantioselective catalytic reaction to afford the corresponding C1-substituted tetrahydroisoquinoline derivatives. ${ }^{16}$ According to an optimized procedure, DHIQs in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were first treated with $(\mathrm{Boc})_{2} \mathrm{O}(\mathbf{6 a})$ at room temperature, and the catalyst (2 mol $\%$) and the malonate were added to the resulting mixture at 0 ${ }^{\circ} \mathrm{C}$. The best enantioselectivity was observed when 1a and diisopropyl malonate 5a were used. This reaction was found to be applicable to substrates having various substitutents on the aromatic ring. ${ }^{18}$ The results are summarized in Table 1. In addition to a simple DHIQ 4a (entry 1), substrates with electrondonating substituents (entries 2-7) and electron-withdrawing substituents (entry 8) were available, and the reaction was completed within several hours in most cases, affording 7^{19} in high yield with good to excellent enantioselectivity ($\sim 98 \%$ yield, $\sim 97 \%$ ee). Interestingly, the substrates with neighboring methoxy groups ($\mathbf{4} \mathbf{e}$ and $\mathbf{4 f}$) underwent the reaction without difficulty despite the possible bidentate coordination of the dimethoxy moiety to the catalyst (entries 5 and 6). Although the substrate $\mathbf{4 g}$ with a methoxy group at the C 8 position was expected to suffer severe steric repulsion, the reaction proceeded smoothly, affording $7 \mathbf{g}$ in 94% yield with 82% ee (entry 7). For $\mathbf{4 e}$ and $4 \mathbf{f}$, the catalyst loading could be reduced to $0.5 \mathrm{~mol} \%$ without significant loss of reaction efficiency (entries 5 and 6). In the case of 7e, a single recrystallization from ethyl acetate gave 7e with 99% ee.

At the beginning of this project, we observed that the addition order of the reagents was extremely important for promoting the reaction. Thus, when DHIQ 4a was mixed with diethyl malonate ($\mathbf{5 b}$) in the presence of $\mathbf{1 b}$, the desired product was not obtained at all, even if $(\mathrm{Boc})_{2} \mathrm{O}$ was added to trap the free amine of the addition product (Scheme 4a). But, a slight modification of the procedure gave the desired coupling product

[^2]TABLE 1. Catalytic Asymmetric Addition Reactions to Various DHIQs ${ }^{a}{ }^{f}$

${ }^{a}$ Reaction conditions: 0.15 mmol of $\mathbf{4}, 0.225 \mathrm{mmol}$ of $\mathbf{5 a}, 0.225$ mmol of $\mathbf{6 a}, 2 \mathrm{~mol} \%$ of $\mathbf{1 a}$ in 0.15 mL of DCM at $0{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Isolated yield after flash column chromatography. ${ }^{c}$ Determined by HPLC (see ref 16). ${ }^{d} 1 \mathrm{~mol} \%$ 1a. ${ }^{e} 0.5 \mathrm{~mol} \%$ 1a. ${ }^{f}$ After recrystallization from ethyl acetate. ${ }^{g} 5 \mathrm{~mol} \% 1 \mathbf{1 a}$.
in high yield. Premixing $4 \mathbf{a}$ with $\mathbf{6 a}$ for 1 h at room temperature, followed by the addition of $\mathbf{5 b}$ and $\mathbf{1 b}$, gave the product $\mathbf{7 i}$ with moderate enantioselectivity (Scheme 4b). Initially, we anticipated that the reaction with DHIQs would proceed in a similar fashion to that which we had reported for the reaction of β-keto esters with acyclic imines (Scheme 2). ${ }^{15}$ We proposed that the imine would be activated by a proton generated during the formation of the chiral Pd enolate, which was considered to be crucial for the reaction. In the present reaction, however, the initial results (Scheme 4) suggested a different mechanism.

On the basis of the experimental data described below, we propose a unique reaction mechanism, as outlined in Scheme 5. The initial reaction of $(\mathrm{Boc})_{2} \mathrm{O}$ with DHIQ 4 gives the carbonate $\mathbf{8}$, and decarboxylation induced by the catalyst $\mathbf{1}$ itself or an acidic proton derived from 1 leads to the formation of the N, O-acetal 9 . Similar formation of N, O-acetals by the reaction of $(\mathrm{Boc})_{2} \mathrm{O}$ with isoquinolines was reported in the literature. ${ }^{20}$ α-Fragmentation is induced by the acidic proton released from $\mathbf{1 a}$, and $t-\mathrm{BuOH}$ and the iminium ion $\mathbf{1 0}$ are formed. The PdOH

SCHEME 6. Reaction of 4a with $\mathbf{6 a}$

complex (3-type) is generated after deprotonation then reacts with the malonate to form the palladium enolate 11, and subsequent nucleophilic attack of the enolate on the iminium ion gives the desired product 7. ${ }^{21}$ In spite of the formation of the highly reactive iminium species, high asymmetric induction was observed under mild reaction conditions $\left(0^{\circ} \mathrm{C}\right.$ to room temperature), which may be attributed to simultaneous dual activation by the Pd complex as an acid-base catalyst.

This reaction mechanism is supported by the following experimental data:
(1) Formation of N, O-acetal 9: The reaction of 4a with $6 \mathbf{a}$ in DCM led to the complete formation of the carbonate 8a in 15 min (Scheme 6). The resulting 8a then slowly decarboxylated to give the N, O-acetal 9a, but the reaction did not reach completion even after a prolonged time. However, mixing 4a and $6 \mathbf{a}$ in toluene at $100{ }^{\circ} \mathrm{C}$ gave $9 \mathbf{a}$ exclusively. Like all the coupling products $\mathbf{7 , 9} \mathbf{9}$ exists as a mixture of two rotamers at room temperature in CDCl_{3}. The conversion of $\mathbf{8 a}$ to $\mathbf{9 a}$ was also promoted by the addition of 1a. A control experiment showed that the addition of a catalytic amount of TfOH is also effective for this purpose. Upon addition of a catalytic amount of 1a to a DCM solution of 8a, violent bubbling (decarboxylation) was observed and the formation of $\mathbf{9 a}$ was complete in less than 15 min .

In Figure 2, the aromatic regions of the ${ }^{1} \mathrm{H}$ NMR spectra of

FIGURE 2. ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (aromatic region): (a) $\mathbf{4 a}$, (b) $\mathbf{6 a}+$ $\mathbf{4 a}$, and (c) $\mathbf{6 a}+\mathbf{4 a}+\mathbf{1 a}$.
$4 \mathbf{a}, 8 \mathbf{a}$, and 9 a are shown. The shift of the C 1 proton signal is striking [for 4a: 8.32 ppm ; for 8a: 7.38 ppm ; for $9 \mathbf{9}$: 6.29 and 6.39 ppm (mixture of two rotamers)], indicating the stepwise formation of 9a. Additionally, decarboxylation of 8a promoted

[^3]

FIGURE 4. ${ }^{13} \mathrm{C}$ NMR in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ in the range $65-85 \mathrm{ppm}$: (a) 9 a , (b) $\mathbf{9} \mathbf{a}+\mathbf{1} \mathbf{a}$ (0.1 equiv), and (c) $\mathbf{9 a}+\mathbf{1 a}$ (0.2 equiv).
by 1a was followed by IR, and the disappearance of one (CO) was observed (Figure 3). Upon addition of $\mathbf{1 a}(2 \mathrm{~mol} \%)$ to $\mathbf{8 a}$

FIGURE 3. IR monitoring of the reaction of $\mathbf{4 a}$ and $\mathbf{6 a}$: black line, 8a; blue line, $\mathbf{8 a}+\mathbf{1 a}(10 \mathrm{~min})$; red line, $\mathbf{8 a}+\mathbf{1 a}(20 \mathrm{~min})$; and violet line, $\mathbf{8 a}+1 \mathbf{1 a}(30 \mathrm{~min}, \mathbf{9 a})$.
$\left[(C O)=1705,1736 \mathrm{~cm}^{-1}\right.$ (black line) $]$, the band at $1736 \mathrm{~cm}^{-1}$ disappeared gradually and the band at $1705 \mathrm{~cm}^{-1}$ shifted to a smaller wavenumber $\left(1692 \mathrm{~cm}^{-1}\right)$. After 30 min , a band at 1692 cm^{-1} alone remained, which corresponds to $9 \mathbf{a}$ (violet line).
(2) α-Fragmentation of 9: To examine the further steps of the reaction, $9 \mathbf{a}$ was treated with 1a, and the formation of t-BuOH was observed by NMR. In Figure $4 \mathrm{a},{ }^{13} \mathrm{C}$ NMR spectra of $9 \mathbf{a}$ in the range of $65-85 \mathrm{ppm}$ are shown. The carbon signals attributed to C 1 and the quaternary tert-butyl carbons were observed in this region. Upon the addition of 1a, a new signal corresponding to $t-\mathrm{BuOH}$ appeared, which grew bigger when additional 1a was added. The other signals, however, did not change significantly. These observations suggest the formation of the hemiacetal 12a, which might be in equilibrium with $9 \mathbf{9}$. This can be understood in terms of α-fragmentation of 9 a to give the iminium ion 10a, followed by a nucleophilic attack by the hydroxide ion or water molecule coordinated to Pd (Scheme 7). The iminium ion is a powerful intermediate in organic synthesis, ${ }^{22}$ and α-fragmentation induced by Lewis or protic acids is a frequently used method. ${ }^{23}$ The equilibrium between

SCHEME 7. Formation of 12a and Side Products 13a and 14a

SCHEME 8. Side Product Formation at Room Temperature

the precursor and the fragmented species is strongly dependent on the substituent on the nitrogen, the nature of the leaving group, and the Lewis acid used for activation. ${ }^{24}$

Generation of 12a is also supported by the following results (Scheme 8). At room temperature, the reaction was complete after only 15 min. But, the Boc-amine 13a (4% yield) and the amide 14a (4% yield) were isolated as side products, which were not formed in the reaction performed at $0{ }^{\circ} \mathrm{C}$. These compounds are considered to be generated via an oxidationreduction pathway from the hemiacetal 12a (Scheme 7). It is likely that 12a reacted with $\operatorname{Pd}(\mathrm{II})$ to give 14a together with a $\mathrm{Pd}-\mathrm{H}$ species, which then reduced 10a to give 13a. We recently reported an efficient asymmetric conjugate reduction of enones using $\mathbf{3 b}$ as a catalyst and ethanol as a reductant, in which $\mathrm{Pd}-\mathrm{H}$ is considered to be a key intermediate. ${ }^{25}$
(3) Formation of the Pd-enolate complex 11: ${ }^{26}$ Under the conditions described in Scheme 8, ESI-MS of the reaction mixture was measured after 5 min . A signal at $m / z 1015.2$ corresponding to the $\mathrm{Pd}-$ enolate complex $11[\{(R)$-dm-
(22) (a) Bloch, R. Chem. Rev. 1998, 98, 1407-1438. (b) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron, 2000, 56, 3817-1856. A general review on iminium ion cyclizations: (c) Royer, J.; Bonin, M.; Micouin, L. Chem. Rev. 2004, 104, 2311-2352.
(23) Arend, M.; Westermann, B.; Risch, N. Angew. Chem., Int. Ed. 1998, 37, 1044-1070.
(24) Yamamoto, Y.; Nakada, T.; Nemoto, H. J. Am. Chem. Soc. 1992, 114, 121-125.
(25) (a) Tsuchiya, Y.; Hamashima, Y.; Sodeoka, M. Org. Lett. 2006, 8, 48514854. (b) Monguchi, D.; Beemelmanns, T.; Hashizume, D.; Hamashima, Y.; Sodeoka, M. J. Organomet. Chem. 2008, 693, 867-873.
(26) For the formation of Pd-enolate complexes of β-keto esters and β-diketones, see: (a) Hamashima, Y.; Hotta, D.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 11240-11241. (b) Hamashima, Y.; Hotta, D.; Umebayashi, N.; Tsuchiya, Y.; Suzuki, T.; Sodeoka, M. Adv. Synth. Catal. 2005, 347, 15761586. (c) Sodeoka, M.; Hamashima, Y. Bull. Chem. Soc. Jpn. 2005, 78, $941-$ 956. (d) Kujime, M.; Hikichi, S.; Akita, M. Organometallics 2001, 20, 40494060. (e) Nama, D.; Pregosin, P. S.; Albinati, A.; Rizzato, S. Organometallics 2007, 26, 21112121. For the formation of Ru enolate complexes of β-ketoesters see: (f) Althaus, M.; Bonaccorsi, C.; Mezzetti, A.; Santoro, F. Organometallics 2006, 25, 3108-3110.

SCHEME 9. Formation of the Pd Enolate 11

SCHEME 10. Comparison between 1b and 3b

segphos $\} \operatorname{Pd}(\mathbf{5 a}-\mathrm{H})]^{+}$was observed, although a major peak ion was $[\{(R)-d m \text {-segphos }\} \operatorname{Pd}(\mathrm{OTf})]^{+}(\mathrm{m} / \mathrm{z} 977.1)$ (Scheme 9a). Although the same enolate complex $\mathbf{1 1}$ was also detected in a solution containing 3a and 5a (Scheme 9b), no corresponding signal appeared from the mixture of 1a and 5a (Scheme 9c). Additionally, H / D exchange reaction was observed after the addition of $\mathrm{D}_{2} \mathrm{O}$ to a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{1 a}$ and $\mathbf{5 a}$ (1:1), and it took 2 h to achieve 50% disappearance of the acidic methylene protons of 5a. In contrast, in the case of 3a and 5a, the H/D exchange was much faster (30 min until completion) (Scheme $9 \mathrm{~d})$. These results suggest that the acidic complex 1a induces α-fragmentation and the deprotonated complex PdOH corresponding to the monomer form of $\mathbf{3 a}$ acts as a base to abstract the α-proton of 5a to give the Pd-enolate complex 11. Interestingly, in our optimization studies, we found that 3a did not catalyze the reaction, although 1a actually did, even in ethanol (Scheme 10). This result suggests that the formation of the Pd enolate alone is not sufficient for promoting the reaction and activation of both reactants is essential, highlighting the importance of the cooperative action of 1a as an acid-base catalyst.

Determination of the Absolute Configuration and the Proposed Transition State Model. As reported previously, ${ }^{16}$ the conversion of $\mathbf{7 e}$ to calycotomine $\mathbf{1 5}$ was carried out, and (R)-calycotomine was obtained. The absolute configuration of 15 was determined by comparison of the optical rotation with the reported value. ${ }^{2 \mathrm{c}, 27}$ This result reveals that the sense of enantioselection of the present reaction is S-selective (Scheme 11).

[^4]SCHEME 11. Conversion of 7e and Determination of the Absolute Configuration

93% ee
$[\alpha]_{\mathrm{D}}{ }^{32}=+11.1\left(\mathrm{c} 0.37, \mathrm{CHCl}_{3}\right)$
$\left[\begin{array}{l}\text { Lit. }^{2 c}(S) \text {-calycotomine: } \\ {[\alpha]_{D}=-13.7\left(\mathrm{c} 0.38, \mathrm{CHCl}_{3}\right)}\end{array}\right]$
Although the exact mechanism of the asymmetric induction is not clear, the observed absolute configuration correlates to our proposed model of the Pd enolate complexes (Figure 5). The bulky i-Pr groups of the malonate would be located away from the aryl rings of the ligand, creating a new C_{2} symmetric environment. The structurally rigid and bulky aromatic ring of the iminium intermediate $\mathbf{1 0}$ points away from the i - Pr group to avoid steric repulsion (model A vs model B), controlling the face selection of the $\mathrm{C}=\mathrm{N}$ bond (model A). The experimental fact observed during the optimization that changing the size of malonate 5 had an influence on the enantioselection seems to be in accord with the proposed transition state model ($\mathrm{R}=\mathrm{Et}$: 73% ee; $R=\mathrm{Bn}: 66 \%$ ee) (Table 2, entries 1-3). Additionally, a significant effect of the substituent of the ligand was observed (entries 1 and 4-6). It is likely that the methyl substituents on the phenyl ring of the ligand might be important to disfavor the minor reaction pathway (model B) as a result of increased steric interaction with the Boc group, thus making the reaction pathway A more favorable.
2. Oxidative Mannich-Type Reaction of Malonates to THIQs. Because we found that the iminium ion is a key intermediate, we next became interested in its formation by oxidative methods starting from the corresponding THIQs (Scheme 12). In addition to α-fragmentation, various oxidative methods have been developed to generate iminium ions, including the use of chemical oxidizing reagents, photochemical methods, and electrochemical oxidations. ${ }^{22,23}$ Such oxidative coupling reactions would have the great advantage that the imines $\mathbf{4}$, preparation of which is often tedious, are no longer necessary, and instead the readily available and stable $\mathbf{1 3}$ can be used. Notably, since some of the starting imines 4 are prepared via oxidation of the corresponding amines with NBS as an oxidant, the direct use of the amines in the asymmetric Mannich-type reactions would reduce the overall number of steps necessary for the preparation of 7. This type of oxidative Mannich reaction has been gaining much attention recently. Although the number of reports is increasing, no catalytic asymmetric version of the reaction has yet been reported, to our knowledge. ${ }^{8,28} \mathrm{Li}$ et al. have reported various oxidative coupling reactions in which reactive iminium and oxonium species are formed either via oxidation with tert-butyl hydroperoxide (TBHP) in the presence of $\mathrm{CuBr}^{28 \mathrm{a}, \mathrm{b}}$ or via oxidation

[^5]
(S)-7 (major)

(R)-7 (minor)

B: less favorable

FIGURE 5. Proposed transition state model. The naphthyl moieties of the ligand were omitted for clarity.

TABLE 2. The Effect of Malonates and Ligands ${ }^{a}$

	$\begin{array}{r} (\mathrm{Boc})_{2} \\ 6 \mathbf{a} \\ (1.1 \mathrm{e} \end{array}$					
entry	5(R)	1	7	time (h)	yield ${ }^{\text {b }}$ (\%)	$\mathrm{ee}^{c}(\%)$
1	5a (i-Pr)	1a	7 a	12	67	80
2	$\mathbf{5 b}$ (Et)	1a	7 i	3	quant.	73
3	5c (Bn)	1a	7j	12	62	66
4	5b (Et)	1b	7 i	2	quant.	44
5	$\mathbf{5 b}$ (Et)	1c	71	1	quant.	48
6	$\mathbf{5 b}$ (Et)	1d	71	7	quant.	65

${ }^{a}$ Reaction conditions: 0.15 mmol of $\mathbf{4 a}, 0.225 \mathrm{mmol}$ of $\mathbf{5}, 0.165$ mmol of $\mathbf{6 a}, 2 \mathrm{~mol} \%$ of $\mathbf{1}$ in 0.15 mL of anhydrous $\mathrm{EtOH} .{ }^{b}$ Isolated yield after flash column chromatography. ${ }^{c}$ Determined by chiral HPLC (see ref 16).

SCHEME 12. Oxidative Routes to Iminium Ions

with DDQ. ${ }^{28 f}$ For example, they reported the oxidative coupling reaction of malonates with N-phenyl-protected THIQs using the TBHP/CuBr combination. ${ }^{28 \mathrm{~b}}$ Inspired by their pioneering work, we examined our reactions using DDQ as an oxidant, because we thought that DDQ would minimize the interference with our Pd-catalyst system compared to that with the THBP/CuBr system. ${ }^{29}$

From Isolated N-Boc-Amines. At first, we examined the reaction of the isolated N-Boc-THIQ 13e. Because DDQ oxidation of 13 e did not occur at $0^{\circ} \mathrm{C}$, the reaction needed to be carried out at room temperature (Table 3). The addition of DDQ in one portion into a DCM solution of 13e and 5a containing $5 \mathrm{~mol} \%$ of $\mathbf{1 a}$ gave 7 e in low yield (9%), but with high enantioselectivity (80% ee) (entry 1). We considered the low yield to be due to the decomposition of the catalyst and undesired reactions induced by a high concentration of the reactive iminium ion. Consequently, we examined the slow addition of DDQ as a DCM solution. To our delight, the yield was dramatically increased when DDQ was added slowly over $5 \mathrm{~h}(83 \%, 86 \%$ ee) (entry 2). However, the chemical yield decreased when the amount of catalyst was reduced to 2 mol $\%$ (entry 3). Since $5 \mathrm{~mol} \%$ of the catalyst was used and the
(29) Indeed, the reaction with $\mathrm{CuBr}-\mathrm{TBHP}$ as an oxidant did not proceed at all. Benzoquinone was also ineffective.
reaction was carried out at room temperature, the substantial amount of water induced redox reactions to give the side products (see Scheme 7). Thus, we prepared anhydrous Pd complex 2a. Structure determination by X-ray analysis confirmed that it contained no water molecule. ${ }^{30}$ When 2a was used instead of 1a, the $\mathrm{H}_{2} \mathrm{O}$-induced side reactions were suppressed effectively, and 7e was obtained in better chemical yield (entry 4). The molecular structure of $\mathbf{2 a}$ displays a square-planar geometry of Pd (II) coordinated with two phosphorus atoms and two oxygen atoms of the trifluoromethanesulfonyl group (Figure 6). Two trifluoromethanesulfonyl groups are positioned in the open space to avoid unfavorable steric interaction with the dimethylphenyl group on the ligand. This supports the proposed structure of the Pd enolate as depicted in Figure 5. In the next section, we further examined the reaction using nonprotected THIQs, and full conversion and excellent chemical yield were achieved using $2 \mathbf{a}$ as a catalyst.

From Amines. Further investigations revealed that the commercially available amine $\mathbf{1 4 e}$ could be used directly (Table 4). Thus, premixing 14e and 6a forms 13e quantitatively and the concomitantly formed t - BuOH did not have any negative effect on the reaction. Again, the slow addition of DDQ was important for high chemical yield and enantioselectivity (entries $1-3$). Finally, the amount of DDQ and 5a could be reduced, and the desired product 7 e was obtained in 97% yield with 86% ee (entries 5 and 6).

Substrate Scope. Under the optimized reaction conditions, THIQs with different substituents on the aromatic ring were subjected to the oxidative Mannich-type reaction. The results are summarized in Table 5. Good results were obtained when THIQs with electron-donating substituents were used (entries $2-4)$, although the reaction of $\mathbf{1 4 g}$ was not so efficient, probably due to steric hindrance (entry 5). Unfortunately, however, only a low yield was observed for $\mathbf{1 4 a}$ (entry 1), and no conversion occurred in the case of $\mathbf{1 4 h}$, which has a Br substituent on the aromatic ring. In contrast to the reaction with the N, O-acetals, this method is limited to THIQs with electron-donating substituents. However, for electron-rich substrates, this one-pot procedure is operationally convenient, and the coupling products were obtained at a synthetically useful level. It should be noted that an easily removable protecting group could be used in our reaction, whereas N-phenyl-substituted substrates have normally been used in the literature. ${ }^{28}$

Proposed Catalytic Cycle. On the basis of the observations in the case of N, O-acetals, we propose a catalytic cycle of the oxidative Mannich-type reaction as shown in Scheme 13. ${ }^{31}$ The reaction of $\mathbf{1 4}$ with $\mathbf{6 a}$ gives the N-Boc-THIQs $\mathbf{1 3}$, and oxidation

[^6]Table 3. Oxidative Mannich-Type Reaction of 13 e and $5 \mathrm{a}^{a}$

entry	Pd cat.	DDQ addition	time (h)	yield^{b} (\%)	$\mathrm{ee}^{c}(\%)$
1	1a	one portion	12	9	80
2	1a	over 5 h	7	83	86
3^{d}	1a	over 5 h	7	34	85
4	2a	over 5 h	7	89	81

${ }^{a}$ Reaction conditions: 0.15 mmol of $\mathbf{1 3 e}, 0.225 \mathrm{mmol}$ of $\mathbf{5 a}, 5 \mathrm{~mol} \%$ of Pd catalyst in 0.15 mL of anhydrous DCM; slow addition of DDQ in 1.5 mL of DCM. ${ }^{b}$ Isolated yield after flash column chromatography. ${ }^{c}$ Determined by chiral HPLC (see ref 16). ${ }^{d} 2 \mathrm{~mol} \%$ of $\mathbf{1 a}$.

2a

top-view

side-view

FIGURE 6. X-ray structure of 2a. Hydrogen atoms are omitted for clarity. Selected distances (\AA) and angles (deg) are as follows: $\mathrm{Pd}(1)-\mathrm{O}(5)$ $2.1541(2), \mathrm{Pd}(1)-\mathrm{O}(8) 2.1595(2), \mathrm{Pd}(1)-\mathrm{P}(2) 2.2305(6), \mathrm{Pd}(1)-\mathrm{P}(1) 2.2382(6), \mathrm{O}(5)-\mathrm{Pd}(1)-\mathrm{O}(8) 82.67(7), \mathrm{O}(5)-\mathrm{Pd}(1)-\mathrm{P}(2) 172.21(5)$, $\mathrm{O}(8)-\mathrm{Pd}(1)-\mathrm{P}(2) 93.80(5), \mathrm{O}(5)-\mathrm{Pd}(1)-\mathrm{P}(1) 94.90(5), \mathrm{O}(8)-\mathrm{Pd}(1)-\mathrm{P}(1) 166.63(5), \mathrm{P}(2)-\mathrm{Pd}(1)-\mathrm{P}(1) 90.10(2), \mathrm{C}(15)-\mathrm{P}(1)-\mathrm{Pd}(1) 117.24(7)$, $\mathrm{C}(2)-\mathrm{P}(1)-\mathrm{Pd}(1) 117.63(7), \mathrm{C}(23)-\mathrm{P}(1)-\mathrm{Pd}(1) 100.75(7), \mathrm{C}(39)-\mathrm{P}(2)-\mathrm{Pd}(1) 111.87(7), \mathrm{C}(9)-\mathrm{P}(2)-\mathrm{Pd}(1) 112.35(7), \mathrm{C}(31)-\mathrm{P}(2)-\mathrm{Pd}(1) 108.62(8)$, $\mathrm{S}(1)-\mathrm{O}(1)-\mathrm{Pd}(1) 131.00(1), \mathrm{S}(2)-\mathrm{O}(8)-\mathrm{Pd}(1) 117.09(1)$.

TABLE 4. Coupling Reaction of 14 e and $5 \mathrm{a}^{a}$

			${ }_{2} j-\operatorname{Pr}$ ${ }_{2} j-\operatorname{Pr} \begin{array}{r} \mathbf{2 a} \\ (5 \mathrm{~mol} \end{array}$ 5a DDQ			
entry	DDQ (equiv)	DDQ addition	5a (equiv)	time (h)	yield $^{\text {b }}$ (\%)	$\mathrm{ee}^{c}(\%)$
1	1.1	over 5 h	1.5	7	64	88
2	1.1	over 2 h	1.5	4	41	75
3	1.1	over 10 h	1.5	12	81	86
4	1.4	over 10 h	1.5	12	80	86
5	1.0	over 10 h	1.5	12	91	86
6	1.0	over 10 h	1.1	12	97	86

${ }^{a}$ Reaction conditions: 0.1 mmol of $\mathbf{1 4 e}, \mathbf{5 a}, 0.11 \mathrm{mmol}$ of $\mathbf{6 a}, 5 \mathrm{~mol} \%$ of $\mathbf{2 a}$ in 0.15 mL of anhydrous DCM; slow addition of DDQ in 1.5 mL of DCM. ${ }^{b}$ Isolated yield after flash column chromatography. ${ }^{c}$ Determined by chiral HPLC (see ref 16).
(hydride abstraction) by DDQ^{32} gives the reactive iminium ion 10. The concomitantly formed phenolate anion $\mathbf{1 5}$ may act as a weak base, which facilitates the formation of the Pd enolate 11. Finally, these active species react to give the desired coupling product 7. We suppose that the limited availability of the substrates is associated with the feasibility of the oxidation of 13, which only proceeds in the case of the electron-rich substrates. We attribute the lower enantioselectivity compared to the reaction with N, O-acetals to the difference in the reaction temperature $\left(0^{\circ} \mathrm{C}\right.$ vs rt$)$ and concentration $(0.5 \mathrm{M}$ vs gradient from 0.75 to 0.1 M$)$. In addition, the formed phenolic coproduct

16 may also interfere with the stereoselectivity of the reaction, although its exact action is not clear.
Asymmetric Synthesis of Tetrahydrobenzo[a]quinolizidine Derivatives. The tetrahydrobenzo $[a]$ quinolizidine system can be found in various alkaloids, such as the ipecac alkaloids, which include emetine as a prominent member. ${ }^{33,34}$ As described above, we normally used a Boc group as a protecting group of

[^7]TABLE 5. Oxidative Mannich-Type Reaction of Various THIQs ${ }^{\text {ad }}$

${ }^{a}$ Reaction conditions: 0.1 mmol of $\mathbf{1 4}, 0.11 \mathrm{mmol}$ of $\mathbf{5 a}, 0.11 \mathrm{mmol}$ of $\mathbf{6 a}, 5 \mathrm{~mol} \%$ of $\mathbf{2 a}$ in 0.15 mL of anhydrous DCM; slow addition of DDQ (1.0 equiv) in DCM (1.5 mL) over $10 \mathrm{~h} .{ }^{b}$ Isolated yield after flash column chromatography. ${ }^{c}$ Determined by chiral HPLC (see ref 16). ${ }^{d} 10 \mathrm{~mol} \%$ of $\mathbf{2 a}$.

SCHEME 13. Proposed Reaction Mechanism for the Oxidative Mannich-Type Reaction

the starting materials. If this Boc group can be replaced by an acryloyl group, it is expected that the coupling product can be subjected to an intramolecular Michael reaction to construct the core structure of the tetrahydrobenzo[a]quinolizidine system. To test this hypothesis, we initially tried to synthesize N-acryloyl N, O-acetals such as $\mathbf{1 7}$ as substrates by the reaction of the imine

[^8]
SCHEME 14. Formation of the Acryloyl-Protected Coupling Product

with acryloyl chloride, followed by treatment with suitable alcohols (Scheme 14). But these compounds were found to be unstable, being readily converted to the corresponding aldehyde by hydrolysis during column chromatography. Therefore, we looked at in situ preparation of the corresponding N, O-acetal using acryloyl carbonate $\mathbf{1 8}$ (Scheme 14). This carbonate was prepared according to the literature. ${ }^{35}$ Treatment of $\mathbf{1 8}$ with $\mathbf{4 a}$ in DCM at $0{ }^{\circ} \mathrm{C}$ gave 17, and no N-Boc-protected compound was observed. To the resulting solution were added the Pd complex 1a and the malonate 5a. Probably because the formation of the corresponding iminium ion might be disfavored by the stronger electron-withdrawing nature of the acryloyl group, the reaction was slow compared to that of the Bocprotected substrate. After 16 h , the coupling product 19 was obtained in 62% yield with as high as 86% ee, indicating that the acryloyl group is also available in this Mannich-type reaction.

Encouraged by this result, we next examined the oxidative Mannich-type reaction with N-acryloyl THIQ 20 and its application to the asymmetric synthesis of the tetrahydrobenzo $[a]$ quinolizidine system (Scheme 15). The amide $\mathbf{2 0}$ was prepared by the conventional method. The following coupling reaction using the DDQ procedure gave 21 in high yield with excellent enantioselectivity ($74 \%, 86 \%$ ee). The formation of the six-membered ring by intramolecular Michael reaction gave the desired 22 without significant loss of optical purity (83% ee). Hydrolysis and decarboxylation under a basic condition, followed by methyl ester formation with TMSCHN_{2}, gave $\mathbf{2 4}$ as a single diastereomer. ${ }^{36}$ The relative configuration of the acid 23 was unequivocally determined by X-ray analysis. ${ }^{37}$ The absolute stereochemistry was assigned by analogy to the case of 7e. The optical purity of 23 was enriched to 99% by recrystallization from methanol. It is noteworthy that catalytic asymmetric synthesis of $\mathbf{2 4}$ was achieved starting from N acryloyl THIQ 20 and no preparation of the corresponding imine was necessary, highlighting the usefulness of the DDQ procedure.

Conclusion

We have developed a novel catalytic asymmetric Mannichtype reaction for the synthesis of optically active C1-substituted

[^9]SCHEME 15. Synthesis of Tetrahydrobenzo[a]quinolizidine Derivative 24

THIQs. The addition reaction of malonates to in situ-formed iminium ion intermediates of DHIQs proceeded smoothly to give the coupling product in high yield with good to excellent enantioselectivity. Mechanistic studies revealed that the reaction with DHIQs in the presence of $(\mathrm{Boc})_{2} \mathrm{O}$ proceeds via the formation of N, O-acetals, and the chiral Pd complex as an acid-base catalyst allows the formation of the Pd enolate and the iminium ions via α-fragmentation of the N, O-acetals. On the basis of these observations, we succeeded in developing the oxidative asymmetric Mannich-type reaction of the THIQs using DDQ as a stoichiometric oxidant. The utility of the second method was further confirmed by an efficient asymmetric synthesis of the tetrahydrobenzo[a]quinolizidine system.
The use of N, O-acetals is unique in asymmetric catalysis, featuring the chiral enolates under acidic conditions. Additionally, the oxidative asymmetric Mannich-type reactions show great potential to improve the overall efficiency of Mannichtype reactions as a result of skipping of the separate preparation of the unstable imines. We believe that the present results provide a basis for the development of novel asymmetric reactions.

Experimental Section

Preparation of the Pd Complexes. The aqua complexes $\mathbf{1 a}$ and 3a were prepared according to the reported procedure. ${ }^{17}$ Dropping a solution of the crude complex in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ into stirred hexane gave pure 1a as a yellow powder.
$\{(\boldsymbol{R})$-dm-segphos $\} \mathbf{P d C l}_{2}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.24$ ($\mathrm{s}, 12 \mathrm{H}$), $2.27(\mathrm{~s}, 12 \mathrm{H}), 5.62(\mathrm{~s}, 2 \mathrm{H}), 5.76(\mathrm{~s}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.52(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~s}, 4 \mathrm{H}), 7.26(\mathrm{~d}, J=12.4$ $\mathrm{Hz}, 4 \mathrm{H}$), 7.48 (br s, 4H); ${ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$, std. 85% $\left.\mathrm{H}_{3} \mathrm{PO}_{4}\right) \delta 27.9 ;[\alpha]^{25}{ }_{\mathrm{D}}+291.7\left(c 0.53, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
[$\{(\boldsymbol{R})$-dm-segphos $\left.\} \mathbf{P d}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)_{2}\right](\mathbf{O T f})_{2}, \mathbf{1 a}:{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.32(\mathrm{~s}, 12 \mathrm{H}), 2.35(\mathrm{~s}, 12 \mathrm{H}), 3.16(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 5.72(\mathrm{~s}$, $2 \mathrm{H}), 5.89(\mathrm{~s}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{dd}, J=8.0,12.9$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.16 (s, 2H), 7.19 (s, 2H), 7.25 (br s, 4H), 7.49 (br s, 4 H); ${ }^{31} \mathrm{P}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, std. $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) $\delta 33.3 ;{ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$, std. TFA) $\delta-2.2 ;[\alpha]^{26}{ }_{\mathrm{D}}+243.2(c 0.67$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
$[\{(\boldsymbol{R}) \text {-dm-segphos }\} \mathbf{P d}(\boldsymbol{\mu} \text { - } \mathbf{O H})]_{2}(\mathbf{O T f})_{2}, \mathbf{3 a}:{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-2.14(\mathrm{~s}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 24 \mathrm{H}), 2.42(\mathrm{~s}, 24 \mathrm{H}), 5.81(\mathrm{~s}, 4 \mathrm{H})$, 5.91 (s, 4H), 6.19 (dd, $J=8.3,12.9 \mathrm{~Hz}, 4 \mathrm{H}), 6.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $4 \mathrm{H}), 6.80(\mathrm{~s}, 12 \mathrm{H}), 7.25(\mathrm{~s}, 4 \mathrm{H})$ [the number of aromatic protons is insufficient due to broadening, but integration between 6.5 and 8.5 ppm gave 24.]; ${ }^{31} \mathrm{P}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, std. $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) $\delta 28.6 ;{ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$, std. TFA) $\delta-2.10$; $[\alpha]^{27}{ }_{\mathrm{D}}$ +408.7 (c 0.30, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

The anhydrous complex 2a was prepared as follows: AgOTf (128 $\mathrm{mg}, 0.51 \mathrm{mmol}, 2.01$ equiv) was added to $\left[\{(R)\right.$-dm-segphos $\left.\} \mathrm{PdCl}_{2}\right]$ $(180.6 \mathrm{mg}, 0.25 \mathrm{mmol})$ in a glovebox. Dry DCM (5 mL) was added under an N_{2} atmosphere, and the resulting mixture was stirred for 12 h under shielding from light. After filtration through a membrane filter (PTFE), the solvent was removed under reduced pressure to give $\mathbf{2 a}$ as a yellow powder ($229 \mathrm{mg}, 80 \%$). This was stored in a glovebox and used directly as a catalyst. Recrystallization from CDCl_{3} gave yellow needles suitable for X-ray analysis. The 3D structure of $\mathbf{2 a}$ is shown in Figure 6.

2a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.30(\mathrm{~s}, 12 \mathrm{H}), 2.36(\mathrm{~s}, 12 \mathrm{H})$, $5.62(\mathrm{~s}, 2 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{dd}, J=$ $8.0,12.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, 4 H), 7.50 (br s, 4H); ${ }^{31} \mathrm{P}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.5 ;{ }^{19} \mathrm{~F}$ NMR $\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-1.76 ;[\alpha]^{26}{ }_{\mathrm{D}}+329.7\left(c 0.33, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

A Representative Procedure for the Addition Reaction with the $\boldsymbol{N}, \mathbf{O}$-Acetal Protocol. The imine $\mathbf{4 e}(300 \mathrm{mg}, 1.57 \mathrm{mmol})$ and (Boc$)_{2} \mathrm{O} 6 \mathbf{6}$ ($513 \mathrm{mg}, 2.35 \mathrm{mmol}, 1.5$ equiv) were dissolved in DCM (1.6 mL) under a nitrogen atmosphere. The resulting mixture was stirred for 30 min at ambient temperature. Under ice-bath cooling, diisopropyl malonate 5 a ($446 \mu \mathrm{~L}, 2.35 \mathrm{mmol}, 1.5$ equiv) and the Pd complex $1 \mathbf{1 a}(18.2 \mathrm{mg}, 0.0156 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ were added successively. After completion of the reaction, ethyl acetate $(5 \mathrm{~mL})$ and brine (5 mL) were added for quenching. The aqueous layer was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$), and the combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent under reduced pressure, followed by flash column chromatography (SiO_{2}, hexane-ethyl acetate or hexane-ether system, $\sim 6 / 1$) of the residue afforded the desired product $7 \mathbf{e}$ as a white solid ($718 \mathrm{mg}, 95 \%$ yield). The ee was determined to be 94% by chiral HPLC analysis. Full characterization data of the new compound $\mathbf{7 j}$ are listed below. Analytical data of other coupling products 7 were reported in ref 16 .

Preparation of $\mathbf{7 j}$. This compound exists as a mixture of rotamers in a ratio of $1.3 / 1$ in CDCl_{3} at $22{ }^{\circ} \mathrm{C}$. Colorless oil; IR (neat) 2971, 1731, 1683, 1364, 1293, 1153, $1118 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.45(\mathrm{~s}, 9 \mathrm{H}), 2.65-2.78(\mathrm{~m}, 0.56 \mathrm{H}[$ major] $)$, 2.82-2.94 (m, 1.44H), 3.27-3.39 (m, 0.56H [major]), 3.54-3.61 (m, 0.44H [minor]), 3.68-3.72 (m, 0.44H [minor]), 3.88-3.91 (m, 1 H), 3.96-4.01 (m, 0.56H [major]), 4.90-5.23 (m, 4H), 5.96 (d, J $=6.8 \mathrm{~Hz}, 0.56 \mathrm{H}$ [major]), $6.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 0.44 \mathrm{H}$ [minor]) 7.04-7.34 (m, 14H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.9,28.1$, $28.3,28.4,38.4,40.3,53.5,54.0,58.8,59.4,67.2,67.3,67.6,80.1$, 80.6, 126.0, 126.1, 126.8, 126.9, 127.5, 127.6, 128.2, 128.2, 128.3, $128.5,128.7,128.8,134.3,134.5,134.6,134.7,134.9,134.9,135.2$, 154.1, 154.7, 166.6, 166.8, 166.9, 167.0; FAB-LRMS (mNBA) m / z $516[\mathrm{M}+1]^{+}$; FAB-HRMS (mNBA) calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{~N}[\mathrm{M}+$ $1]^{+} 512.2386$, found 512.2384; $[\alpha]^{26}{ }_{\mathrm{D}}+25.3\left(c 0.34, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(66 \%$ ee); HPLC (DAICEL CHIRALCEL OD-H, n-hexane/IPA $=95 / 5$, $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \tau_{\text {major }} 16.9 \mathrm{mi}$., $\tau_{\text {minor }} 18.3 \mathrm{~min}$.)

Preparation of 13. N -Boc-protected THIQs were prepared by the reaction of the amines $\mathbf{1 4}$ with $(\mathrm{Boc})_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and their NMR spectra were found to be identical with the data reported in the literature (13a, 13e). ${ }^{38}$

In Situ Preparation of Carbonate 8a. To an NMR sample tube containing $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ were added $\mathbf{4 a}(13 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathbf{6 a}(22 \mathrm{mg}, 0.1 \mathrm{mmol})$. After 10 min , clean formation of $\mathbf{8 a}$ was observed by NMR. Colorless oil; IR (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 1736, 1705 cm^{-1} (both CO); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.51$ (s, 9H), 2.7-2.9 (m, 2H), $3.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.15-7.5$ $(\mathrm{m}, 3 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.7,28.3,28.4,38.4,79.7,80.0,81.9,126.6,127.9$, 128.1, 128.8, 132.5, 135.5, 152.9, 153.8; FAB-LRMS (mNBA) m / z $232[10 a-\mathrm{OTf}]^{+}$(decarboxylation occurred readily during the FABLRMS measurement).
Preparation of the $\boldsymbol{N}, \boldsymbol{O}$-Acetal 9 a . The imine $\mathbf{4 a}(13 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ and $\mathbf{6 a}(22 \mathrm{mg}, 0.1 \mathrm{mmol})$ were dissolved in toluene, and the mixture was heated to $90^{\circ} \mathrm{C}$ for 1 h . Evaporation of the solvent under reduced pressure gave 9a. This compound was a mixture of the rotamers in a ratio of $1.3 / 1$ in CDCl_{3} at $24^{\circ} \mathrm{C}$. IR (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) $1692 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 1.37$ ($\mathrm{s}, 9 \mathrm{H}$), $1.45-1.80(\mathrm{~m}, 9 \mathrm{H}), 2.30-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.8-3.1(\mathrm{~m}, 1 \mathrm{H}), 3.4-3.6$ $(\mathrm{m}, 1 \mathrm{H}), 3.9-4.3(\mathrm{~m}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 0.56 \mathrm{H}[$ major] $), 6.39(\mathrm{~s}, 0.44 \mathrm{H}$ [minor]), $7.1-7.25(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.8$, $27.9,28.2,28.3,28.6,28.7,35.9,37.3,74.7,75.9,76.9,79.7,80.2$, $125.9,126.0,127.5,127.6,128.2,128.4,128.7,129.0,135.1,135.2$, 136.5, 136.5, 152.8, 153.6; FAB-LRMS (mNBA) $\mathrm{m} / \mathrm{z} 232$ [10a-OTf $]^{+}$.
Conversion to (\boldsymbol{R})-Calycotomine. Conversion of $\mathbf{7 e}$ to $\mathbf{1 5}$ was conducted as described in ref 16 . The product was found identical with the reported material by comparison of NMR data. ${ }^{2 \mathrm{c}, 27}$ The absolute configuration of $\mathbf{1 5}$ was determined by comparison of the optical rotation with the reported value.

Preparation of the Amine 14. The amines 14a and 14e (hydrochloride salt) are commercially available. Other amines 14c, $\mathbf{1 4 f}$, and $\mathbf{1 4 g}$ were prepared by a modified Pictet-Spengler procedure ${ }^{39}$ and the NMR spectra were found to be identical with the data reported in the literature. ${ }^{40}$

14c: Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.75$ (br s, $1 \mathrm{H}, \mathrm{NH}), 2.69(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.90$ (s, 2H), $5.88(\mathrm{~s}, 2 \mathrm{H}), 6.47(\mathrm{~s}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.3,43.9,48.4,100.4,106.0,108.8,108.8,127.4$, 128.6, 145.5, 145.6.

[^10]14f: White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.83$ (br s, 1 H , NH), 2.77 (bt, 2H), 3.11 (bt, 2H), 3.80 (s, 3H), 3.84 (s, 3H), 3.94 $(\mathrm{s}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.9,43.6,47.8,55.9,60.0,110.2$, 121.4, 129.0, 146.6, 150.5.

14g: White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.18$ (s, 1 H , $\mathrm{NH}), 2.65(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \overline{\mathrm{H}}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.6,43.0,43.4$, 55.5, 55.6, 106.6, 107.0, 125.0, 125.7, 149.9, 151.2.

Oxidative Mannich-Type Reaction Starting from the N -Boc-amine 13e. The N-Boc amine 13e ($29.3 \mathrm{mg}, 0.1 \mathrm{mmol}$), diisopropyl malonate $5 \mathbf{a}(28.5 \mu \mathrm{~L}, 0.15 \mathrm{mmol})$, and the Pd complex 1a or $\mathbf{2 a}(5 \mathrm{~mol} \%)$ were dissolved in DCM $(0.2 \mathrm{~mL})$ under a nitrogen atmosphere. DDQ ($25 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5$ mL) was slowly added over 5 h to the reaction mixture with a syringe pump (addition speed: $0.3 \mathrm{~mL} / \mathrm{h}$). After the addition was complete, the reaction was stirred for an additional 2 h . The mixture was diluted with ether $(4 \mathrm{~mL})$ and filtered through a silica pad with ether as the eluent. The obtained yellow solution was evaporated under reduced pressure and the remaining yellow oil was purified by flash column chromatography (hexane/ether $=5 / 1$ to $4 / 1$) to give the desired product $7 \mathrm{e}(39.8 \mathrm{mg}, 83 \%$ yield, 86% ee).

A Representative Procedure for the Oxidative Mannich-Type Reaction Starting from the Amine 14. The amine $\mathbf{1 4 e}$ (19.3 mg , $0.1 \mathrm{mmol})$ and $\mathbf{6 a}(25.3 \mu \mathrm{~L}, 0.11 \mathrm{mmol})$ were dissolved in DCM $(0.15 \mathrm{~mL})$ under a nitrogen atmosphere. After 30 min , 5a (20.8 $\mu \mathrm{L}, 0.11 \mathrm{mmol})$ and $2 \mathrm{a}(5.6 \mathrm{mg} 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ were added, and DDQ ($22.8 \mathrm{mg}, 0.1 \mathrm{mmol}$) dissolved in DCM (1.5 mL) was added slowly with a syringe pump (addition speed: $0.15 \mathrm{~mL} / \mathrm{h}$). After the addition was complete, the mixture was stirred for an additional 2 h . The reaction was quenched by the addition of saturated aqueous NaHCO_{3} and the mixture was extracted twice with ethyl acetate. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Further purification on a silica gel column gave $7 \mathrm{e}(46.6 \mathrm{mg}, 0.97 \mathrm{mmol}, 97 \%$ yield, 86% ee). Recrystallization from ethyl acetate gave 7 e with 99% ee (37 mg , $0.77 \mathrm{mmol}, 77 \%$ yield).

Preparation of 18. tert-Butyl acryloyl carbonate 18 was obtained in quantitative yield according to a reported procedure. ${ }^{35 \mathrm{~b}}$ IR (neat) 2985, 2939, 1795, 1744, 1632, 1405, 1372, 1253, 1199, 1170, 1133 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.56(\mathrm{~s}, 9 \mathrm{H}), 6.03(\mathrm{dd}, J=$ $1.5,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=10.6,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=$ $1.5,16.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.4,85.6,126.8$, 134.4, 146.9, 160.8.

Procedure for the Addition Reaction with the Acryloyl Carbonate 18. The DHIQ $4 \mathbf{4}(13.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ was dissolved in dry $\mathrm{DCM}(0.15 \mathrm{~mL})$ under a nitrogen atmosphere. The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ and tert-butyl acryloyl carbonate $\mathbf{1 8}$ $(25.8 \mathrm{mg}, 0.15 \mathrm{mmol})$ in DCM (0.15 mL) was added dropwise. This mixture was stirred for 15 min , then diisopropyl malonate 5a $(28.5 \mu \mathrm{~L}, 0.15 \mathrm{mmol})$ and $\mathbf{1 a}(5.8 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ were added, and the resulting mixture was stirred for 16 h at $0{ }^{\circ} \mathrm{C}$. Saturated aqueous NaCl was added for quenching and the aqueous layer was extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated under reduced pressure. Purification by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate 3/1) afforded 19 as a colorless oil ($23.2 \mathrm{mg}, 0.062 \mathrm{mmol}, 62 \%, 86 \%$ ee). This compound was a mixture of the rotamers in a ratio of 1.9:1 in CDCl_{3} at room temperature. IR (neat) 2981, 2936, 1723, 1650, 1615, 1428, $1375,1262,1181,1160,1100,977,935,906,822,791,757 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.07(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$ [minor]), $1.11(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$ [minor]), 1.13 (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$ [major]), $1.20-1.25(\mathrm{~m}, 8 \mathrm{H}), 2.80-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{ddd}, J=5.4,9.5$, $13.4 \mathrm{~Hz}, 0.66 \mathrm{H}$ [major]), 3.73 (d, $J=7.2 \mathrm{~Hz}, 0.34 \mathrm{H}$ [minor]), $3.80-3.98(\mathrm{~m}, 1.34 \mathrm{H}[$ major + minor $]), 4.47-4.54(\mathrm{~m}, 0.66 \mathrm{H}$ [major]), 4.91 (quint, $J=6.1 \mathrm{~Hz}, 0.34 \mathrm{H}$ [minor]), $4.99-5.07$ (m, $1.66 \mathrm{H}), 5.70(\mathrm{dd}, J=1.7,10.5 \mathrm{~Hz}, 0.34 \mathrm{H}$ [minor]), 5.73 (dd, $J=$
$2.0,10.5 \mathrm{~Hz}, 0.66 \mathrm{H}$ [major]), 5.84 (d, $J=9.2 \mathrm{~Hz}, 0.66 \mathrm{H}$ [major]), $6.29(\mathrm{dd}, J=2.0,16.6 \mathrm{~Hz}, 0.66 \mathrm{H}[\mathrm{major}]), 6.30(\mathrm{dd}, J=1.7,16.6$ $\mathrm{Hz}, 0.34 \mathrm{H}$ [minor]), 6.43 (d, $J=7.3 \mathrm{~Hz}, 0.34 \mathrm{H}$ [minor]), 6.59 (dd, $J=10.5,16.6 \mathrm{~Hz}, 0.34 \mathrm{H}$ [minor]), 6.93 (dd, $J=10.5,16.6$ $\mathrm{Hz}, 0.66 \mathrm{H}$ [major]), $7.10-7.24$ (m, 3.66H), 7.43 (d, $J=7.6 \mathrm{~Hz}$, 0.34 H [minor]); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.4,21.5,21.6$, $21.6,21.7,27.2,28.6,37.6,41.3,51.4,54.9,59.3,59.5,69.2,69.5$, $69.8,70.1,126.2,126.4,126.7,127.5,127.7,127.9,128.0,128.1$, 128.3, 128.4, 129.2, 133.7, 134.3, 134.7, 134.8, 166.0, 166.3, 166.7; FAB-LRMS (m NBA) $m / z 374[\mathrm{M}+1]^{+}$; FAB-HRMS (mNBA) calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}$396.1787, found 396.1792; $[\alpha]^{20}{ }_{\mathrm{D}}+34.0\left(c \quad 0.78, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HPLC (Daicel Chiralcel OD-H, n-hexane $/ \mathrm{IPA}=9 / 1,1 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, \tau_{\text {minor }} 40.2 \mathrm{~min}, \tau_{\text {major }} 46.3$).

Asymmetric Synthesis of Tetrahydrobenzo[a]quinolizidine Derivative. 20: The starting material $\mathbf{1 4 e} \cdot \mathrm{HCl}(1 \mathrm{~g}, 4.3 \mathrm{mmol})$ was suspended in $\mathrm{DCM}(50 \mathrm{~mL})$. At $0^{\circ} \mathrm{C}$, triethylamine (1.8 mL , 13.0 mmol) was added, and the solution was stirred for 30 min at room temperature. Acryloyl chloride ($384 \mu \mathrm{~L}, 4.73 \mathrm{mmol}$) was slowly added at $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and for 2 h at room temperature. The solution was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent under reduced pressure, followed by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-acetone 5:1) afforded 20 as a white solid ($840 \mathrm{mg}, 79 \%$ yield). This compound was a mixture of the rotamers in a ratio of $1.2 / 1$ in CDCl_{3} at room temperature. IR (neat) 2840, 1650, 1610, 1519, 1460, 1431, 1201, 1120, $1016 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.78-2.85(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.88(\mathrm{~m}, 8 \mathrm{H}), 4.65(\mathrm{~s}, 0.9 \mathrm{H}$ [minor]), 4.72 (s, 1.1H [major]), 5.72 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.30$ (s, 0.45 H [minor]), 6.34 ($\mathrm{s}, 0.55 \mathrm{H}$ [major]), 6.57-6.68 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.3,29.2,40.1,43.7,44.3,47.3$, $56.0,108.8,109.3,111.1,111.5,124.0,125.1,125.6,126.8,127.7$, 127.9, 147.5, 147.7, 165.6, 165.7; FAB-LRMS (m NBA) $\mathrm{m} / \mathrm{z} 270$ $[\mathrm{M}+\mathrm{Na}]^{+} ;$FAB-HRMS ($m \mathrm{NBA}$) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{NNa}[\mathrm{M}+$ $\mathrm{Na}]^{+}$270.1106, found 270.1107.

21: The obtained 20 ($247 \mathrm{mg}, 1 \mathrm{mmol}$), $\mathbf{5 a}$ ($208 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$), and 2a ($112 \mathrm{mg}, 10 \mathrm{~mol} \%$) were dissolved in DCM $(1.5 \mathrm{~mL})$. DDQ ($250 \mathrm{mg}, 1.1 \mathrm{mmol}$) in DCM (15 mL) was slowly added over 10 h to the reaction mixture with a syringe pump (addition speed: $1.5 \mathrm{~mL} / \mathrm{h}$). After the addition was complete, the mixture was stirred for an additional 1 h . The reaction was quenched with saturated aqueous NaHCO_{3} and the mixture was extracted twice with ethyl acetate. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was filtered, reduced in vacuo, and purified by flash column chromatography (hexane/ethyl acetate $=4 / 1$ to $3 / 1$) to give 21 as a colorless oil ($309 \mathrm{mg}, 0.72$ $\mathrm{mmol}, 74 \%$ yield, $86 \% \mathrm{ee}$). This compound was a mixture of the rotamers in a ratio of $2.0 / 1$ in CDCl_{3} at room temperature. IR (neat) 2981, 2936, 1722, 1650, 1611, 1515, 1431, 1255, $1098 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$ [minor] $), 1.09$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$ [minor] $), 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}[$ major $])$, $1.18-1.25(\mathrm{~m}, 8 \mathrm{H}), 2.70-2.78(\mathrm{~m}, 0.67 \mathrm{H}$ [major]), $2.87(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 0.67 \mathrm{H}$ [major]), 2.91-3.01 (m, 0.67H), 3.22-3.30 (m, $0.67 \mathrm{H}), 3.72-3.87(\mathrm{~m}, 7.67 \mathrm{H}), 4.53-4.60(\mathrm{~m}, 0.67 \mathrm{H}), 4.90(\mathrm{q}, J$ $=6.4 \mathrm{~Hz}, 0.33 \mathrm{H}[\mathrm{minor}]), 4.97-5.06(\mathrm{~m}, 1.67 \mathrm{H}), 5.67-5.74(\mathrm{~m}$, $1.67 \mathrm{H}), 6.25-6.35(\mathrm{~m}, 1.33 \mathrm{H}), 6.54-6.62(\mathrm{~m}, 1.33 \mathrm{H}), 6.77(\mathrm{~s}$, 0.67 H [major]), 6.90 (dd, $J=6.4,16.9 \mathrm{~Hz}, 0.68 \mathrm{H}$ [major]), 7.03 (s, 0.32H [minor]); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.5,21.5,21.6$, 21.6, 21.6 (these peaks are too close to identify), 26.9, 28.3, 37.2, $41.0,50.9,54.5,55.8,59.5,59.7,69.1,69.4,69.8,70.0,109.6$, $110.9,111.0,111.5,125.5,126.3,126.5,127.6,128.0,128.2,147.0$, 147.1, 148.1, 148.4, 165.6, 165.9, 166.0, 166.7, 166.8, 166.9; FABLRMS ($m \mathrm{NBA}$) $m / z 456[\mathrm{M}+\mathrm{Na}]^{+}$; FAB-HRMS ($m \mathrm{NBA}$) calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{O}_{7} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+} 456.1998$, found 456.1998; $[\alpha]^{20}{ }_{\mathrm{D}}$ +63.0 (c 1.98, CHCl_{3}) (86% ee); HPLC (DAICEL CHIRALPAK $\mathrm{AD}-\mathrm{H}, n$-hexane $/ \mathrm{IPA}=4 / 1,1.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, \tau_{\text {minor }} 9.0 \mathrm{~min}$, $\tau_{\text {major }} 12.3 \mathrm{~min}$).

22: The obtained $21(36.4 \mathrm{mg}, 0.084 \mathrm{mmol})$ was dissolved in dry THF (0.3 mL). One grain of NaH (paraffin 60%) was added
and the reaction mixture was stirred at $35^{\circ} \mathrm{C}$ for 32 h . The solution was reduced in vacuo and the residue was directly purified by flash column chromatography (hexane/ethyl acetate $=3 / 1$ to $2 / 1$) to give 22 as a colorless oil ($26.4 \mathrm{mg}, 0.062 \mathrm{mmol}, 74 \%$ yield, 83% ee). IR (neat) 2978, 2936, 1732, 1712, 1670, 1516, 1464, 1454, 1411, $1264,1229,1195,1173,1145,1121,1105 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.75(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.25(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.3-2.7$ $(\mathrm{m}, 5 \mathrm{H}), 2.7-2.9(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.55(\mathrm{br} \mathrm{d}, J$ $=11.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.67 (quint, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.15 (quint, $J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.9,21.4,21.5,21.6,28.4,29.5,29.8,40.0,55$. $9,55.9,58.3,60.2,69.3,69.8,69.3,69.8,111.0,111.1,124.5,129.8$, 147.0, 148.0, 168.4, 171.0, 171.8; FAB-LRMS (mNBA) $m / z .456$ $[\mathrm{M}+\mathrm{Na}]^{+} ;$FAB-HRMS ($m \mathrm{NBA}$) calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{O}_{7} \mathrm{NNa}[\mathrm{M}+$ $\mathrm{Na}]^{+} 456.1998$, found 456.1996; $[\alpha]^{20}{ }_{\mathrm{D}}-15.1\left(c 0.41, \mathrm{CHCl}_{3}\right)(83 \%$ ee); HPLC (DAICEL CHIRALPAK AD-H, n-hexane/IPA $=4 / 1$, $0.5 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, \tau_{\text {minor }} 14.4 \mathrm{~min}, \tau_{\text {major }} 15.7 \mathrm{~min}$).

23: The diester 22 ($66.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 83 \%$ ee) was dissolved in $\mathrm{EtOH}(6.0 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and $\mathrm{KOH}(64 \mathrm{mg}, 7.5$ equiv) were added. The reaction was refluxed for 36 h and cooled to ambient temperature, then all volatiles were removed by evaporation. The residue was dissolved in $1 \mathrm{~N} \mathrm{NaOH}(5 \mathrm{~mL})$ and washed twice with $\mathrm{Et}_{2} \mathrm{O}$, and the organic layer was extracted with 1 N NaOH . The combined aqueous layers were acidified with 2 N HCl to $\mathrm{pH} 1-2$ and extracted with $\mathrm{AcOEt}(7 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to yield the monocarboxylic acid 23 as a white solid ($31.9 \mathrm{mg}, 0.10$ $\mathrm{mmol}, 66 \%$). Mp 227-229 ${ }^{\circ} \mathrm{C}$; IR (neat) 2930, 2851, 1972 (br), 1701, 1564, 1522, 1463, 1448, 1357, 1330, 1288, 1254, 1241, 1227, $1191,1122,1102,1083,1042,1020,980,955,889,864,850 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 2.02-2.15$ (m, 2H), 2.39 (ddd, J $=6.0,9.2,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dt}, J=6.0,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dt}$, $J=4.6,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{ddd}, J=4.6,10.1,16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.00-3.07$ (m, 1H), 3.13 (ddd, $J=4.6,10.1,12.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 (s, 3H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 4.37$ (dt, $J=4.6,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 23.3,28.2,30.6,41.7,45.0,56.0,56.1,57.1,107.7$, 111.7, 127.7, 128.4, 147.5, 148.2, 169.1, 176.3; ESI-MS (MeOH) $\mathrm{m} / \mathrm{z} 306[\mathrm{M}+1]^{+}$, FAB-LRMS (Gly) $\mathrm{m} / \mathrm{z} 306[\mathrm{M}+1]^{+} ;[\alpha]^{20} \mathrm{D}$ -57.0 (c 0.24, MeOH) ($83 \% \mathrm{ee}$).

24: The acid 23 ($14.2 \mathrm{mg}, 0.046 \mathrm{mmol}$) was dissolved in DCM/ $\mathrm{MeOH}(5 / 3,0.8 \mathrm{~mL})$ under a N_{2} atmosphere. TMSCHN_{2} (1.5 equiv, $35 \mu \mathrm{~L}, 2 \mathrm{M}$ in diethyl ether, 0.069 mmol) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred for 3 h while it was allowed to warm to room temperature. The solvent was removed by evaporation and flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH}=95 / 5\right)$ of the residue afforded the methyl ester $\mathbf{2 4}$ as a colorless oil $(12.7 \mathrm{mg}, 0.040 \mathrm{mmol}$, $87 \%, 83 \%$ ee). IR (neat) 2954, 2928, 2854, 1732, 1639, 1519, 1464, 1439, 1360, 1331, 1259, 1224, 1167, 1119, $1019 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.02-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{ddd}, J=5.6,8.4$, $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ (dt, $J=6.0,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.73(\mathrm{~m}, 2 \mathrm{H})$, $2.88-3.07(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.58$ (dt, $J=4.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H})$, $6.65(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.6,28.3,30.8,41.3$, 46.1, 52.5, 55.9, 56.0, 57.1, 107.8, 111.7, 127.8, 128.4, 147.5, 148.1, 168.9, 174.3; FAB-LRMS (Gly) m/z $320[\mathrm{M}+1]^{+}$; FAB-HRMS (Gly) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+1]^{+} 320.1498$, found 320.1501; $[\alpha]^{20_{D}}-47.0$ (c 0.13, DCM) (83% ee); HPLC (Daicel Chiralcel OD-H, n-hexane $/ \mathrm{IPA}=4 / 1,1 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}$, $\tau_{\text {minor }} 18.3 \mathrm{~min}$, $\tau_{\text {major }} 20.9 \mathrm{~min}$).

Acknowledgment. This paper is dedicated to Prof. E. J. Corey on his 80th birthday. This work was supported by a Grant-in-Aid for the Encouragement of Young Scientists (B)
(No. 18790005), a Grant-in-Aid for Scientific Research on Priority Areas (No. 19028065, "Chemistry of Concerto Catalysis"), Special Project Funding for Basic Science, and a MeijiSeika Award in Synthetic Organic Chemistry, Japan (2003). C.D. is grateful to JSPS and SNF for financial support. We also thank Dr. Takao Saito of Takasago International Corporation for generous support.

Supporting Information Available: NMR spectra of the Pd complexes 1a, 2a, and 3a, the new compounds $\mathbf{7 j}, \mathbf{1 8}, \mathbf{1 9}$, and 21-24, experimental details of X-ray analysis, and crystallographic information files (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

JO800800Y

[^0]: ${ }^{+}$Synthetic Organic Chemistry Laboratory, RIKEN 2-1 Hirosawa.

 * Molecular Characterization Team, RIKEN.
 (1) (a) Bentley, K. W. Nat. Prod. Rep. 2001, 18, 148-170. (b) Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669-1730.

[^1]: (13) (a) Kobayashi, S.; Ueno, M. In Comprehensive Asymmetric Catalysis; JacobsenE. N., ; Pfaltz, A., ; Yamamoto, H., Eds.; Springer: Berlin, 2004; Supplement 1, Chapter 29.5. (b) Cordova, A. Acc. Chem. Res. 2004, 37, 102112. (c) Friestad, G. K.; Mathies, A. K. Tetrahedron 2007, 63, 2541-2569. (d) Ferraris, D. Tetrahedron 2007, 63, 9581-9597. (e) Petrini, M.; Torregiani, E. Synlett 2007, 159-186. (f) Shibasaki, M.; Matsunaga, S. J. Organomet. Chem. 2006, 691, 2089-2100.
 (14) For selected examples of diastereoselective Mannich-type reactions of chiral metal enolates with cyclic imines and iminium ions see: (a) Nagao, Y.; Kumagai, T.; Tatami, S.; Abe, T.; Kuramoto, Y.; Taga, T.; Aoyagi, S.; Nagase, Y.; Ochiai, M.; Inoue, Y.; Fujita, E. J. Am. Chem. Soc. 1986, 108, 4673-4675. (b) Nagao, Y.; Dai, W.-M.; Ochiai, M.; Tsukagoshi, S.; Fujita, E. J. Am. Chem. Soc. 1988, 110, 289-291. (c) Nagao, Y.; Dai, W.-M.; Ochiai, M.; Tsukagoshi, S.; Fujita, E. J. Org. Chem. 1990, 55, 1148-1156. (d) Matsumura, Y.; Kanda, Y.; Shirai, K.; Onomura, O.; Maki, T. Org. Lett. 1999, 1, 175-178. (e) Matsumura, Y.; Kanda, Y.; Shirai, K.; Onomura, O.; Maki, T. Tetrahedron 2000, 56, 7411-7422. (f) Pilli, R. A.; Böckelmann, M. A.; Alves, C. F. J. Braz. Chem. Soc. 2001, 12, 634-651. (g) Barragán, E.; Olivo, H. F.; Romero-Ortega, M.; Sarduy, S. J. Org. Chem. 2005, 70, 4214-4217. (h) Olivo, H. F.; Tovar-Miranda, R.; Barragán, E. J. Org. Chem. 2006, 71, 3287-3290.
 (15) (a) Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei, H.; Umebayashi, N.; Sodeoka, M. Angew. Chem., Int. Ed. 2005, 44, 1525-1529. (b) Sodeoka, M.; Hamashima, Y. Pure Appl. Chem. 2006, 78, 477-494.

[^2]: (16) Part of this work was reported as a communication: Sasamoto, N.; Dubs, C.; Hamashima, Y.; Sodeoka, M., J. Am. Chem. Soc. 2006, 128, 1401014011.
 (17) For preparation of the Pd complexes $\mathbf{1} \mathbf{- 3}$ see: Fujii, A.; Hagiwara, E.; Sodeoka, M. J. Am. Chem. Soc. 1999, 121, 5450-5458.
 (18) DIHQs were prepared according to the known procedures: (a) Pelletier, J. C.; Cava, M. P. J. Org. Chem. 1987, 52, 616-622. (b) Rohluff, J. C.; Dyson, N. H.; Gardner, J. O.; Alfredson, T. V.; Sparacino, M. L.; Robinson, J., III J. Org. Chem. 1993, 58, 1935-1938. (c) Clark, R. D.; Repke, D. B.; Berger, J.; Nelson, J. T.; Kilpatrick, A. T.; Brown, C. M.; MacKinnon, A. C.; Clague, R. U.; Spedding, M. J. Med. Chem. 1991, 34, 705-717. (d) Huang, W.-J.; Singh, O. V.; Chen, C.-H.; Chiou, S.-Y.; Lee, S.-S. Helv. Chim. Acta 2002, 85, 1069-1078. (e) Fecik, R. A.; Devasthale, P.; Pillai, S.; Keschavarz-Shokri, A.; Shen, L.; Mitscher, L. A. J. Med. Chem. 2005, 48, 1229-1236.
 (19) All compounds $7 \mathbf{a}-\boldsymbol{l}$ exist as a mixture of rotamers. See ref 16 .

[^3]: (20) For the formation of N, O-acetal by the reaction of $(\mathrm{Boc})_{2} \mathrm{O}$ with isoquinoline: see: Ouchi, H.; Saito, H.; Yamamoto, Y.; Takahata, H. Org. Lett. 2002, 4, 585-587.
 (21) The asymmetric addition reaction of malonates to cyclic N, O-acetals has been reported: Onomura, O.; Kanada, Y.; Nakamura, T.; Maki, T.; Matsumura, Y. Tetrahedron Lett. 2002, 43, 3229-3231.

[^4]: (27) (a) Morimoto, T.; Suzuki, N.; Achiwa, K. Tetrahedron: Asymmetry 1998, 9, 183-187. For a review on calycotomine see: (b) Kaufmann, T. S. Synthesis 2005, 339-360. See also ref 2c.

[^5]: (28) Oxidative Mannich-type reactions: (a) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 3672-3673. (b) Li, Z.; Li, C.-J. Eur. J. Org. Chem. 2005, 31733176. (c) Murahashi, S.-i.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. 2003, 125, 15312-15313. (d) Murahashi, S.-i.; Komiya, N.; Terai, H. Angew. Chem., Int. Ed. 2005, 44, 6931-6933. (e) Catino, A. J.; Nichols, J. M.; Nettles, B. J.; Doyle, M. P. J. Am. Chem. Soc. 2006, 128, 5648-5649. (f) Zhang, Y.; Li, C.-J. Angew. Chem., Int. Ed. 2006, 45, 1949-1952. (g) Matsuo, J.; Tanaki, Y.; Ishibashi, H. Org. Lett. 2006, 8, 4371-4374. (h) Matsuo, J.; Tanaki, Y.; Ishibashi, H. Tetrahedron Lett. 2007, 48, 3233-3236.

[^6]: (30) The crystallographic data for $\mathbf{2 a}$ have been deposited with the Cambridge Crystallographic Data Centre as supplementary no. CCDC 673878. These data can be obtained online free of charge.
 (31) A similar reaction mechanism is proposed in ref 28 b .

[^7]: (32) The initial reaction step in the oxidation with DDQ is believed to be hydrogen abstraction. See: Fu, P. P.; Harvey, R. G., Chem. Rev., 1978, 78, 317361.
 (33) Fujii, T.; Ohba., M. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 1998; Vol 51, pp 271-323.

[^8]: (34) For recent examples, see: (a) García, E.; Lete, E.; Sotomayor, N. J. Org. Chem. 2006, 71, 6776-6784. (b) Bassas, O.; Llor, N.; Santos, M.-M.; Griera, R.; Molins, E.; Amat, M.; Bosch, J. Org. Lett. 2005, 7, 2817-2820. (c) Tietze, L. F.; Rackelmann, N.; Müller, I. Chem. Eur. J. 2004, 10, 2722-2731. (d) Kirschbaum, S.; Waldmann, H. J. Org. Chem. 1998, 63, 4936-4946.

[^9]: (35) (a) Yamamoto, Y.; Tarbell, D. S. J. Org. Chem. 1971, 36, 2954. (b) Vansteenkiste, S.; Matthijs, G.; Schacht, E.; Schrijver, F. D.; Damme, M. V.; Vermeersch, J. Macromol. Rapid Commun. 1999, 20, 333.
 (36) For the synthesis of racemic 24 see: Ihara, M.; Yamada, M.; Ishida, Y.; Tokunaga, Y.; Fukumoto, K. Heterocycle, 1997, 44, 531-536.
 (37) The crystallographic data for $\mathbf{2 3}$ have been deposited with the Cambridge Crystallographic Data Centre as supplementary no. CCDC 670312. These data can be obtained online free of charge.

[^10]: (38) For 13a, see: (a) Alonso, E.; Ramón, D. J.; Yus, M. Tetrahedron 1997, 53, 14355-14368. For 13e, see: (b) Coppola, G. M. J. Heterocycl. Chem. 1991, 28, 1769-1772.
 (39) Sumita, K.; Koumori, M.; Ohno, S. Chem. Pharm. Bull. 1994, 42, 16761678.
 (40) 14c: (a) Ruchirawat, S.; Chaisupakitsin, M.; Patranuwatana, N.; Cashaw, J. L.; Davis, V. E. Synth. Commun. 1984, 14, 1221-1228. 14 f and 14 g : (b) Clark, R. D.; Berger, J.; Garl, P.; Weinhardt, K. K.; Spedding, M.; Kilpatrick, A. T.; Brown, C. M.; MacKinnon, A. C. J. Med. Chem. 1990, 33, 596-600.

